Evolution in the Lab

OPINIONS will vary about this news, but at the website of Rockefeller University we learn: Simulator allows scientists to predict evolution’s next best move.

Here’s what they say:

Biologists today are doing what Darwin thought impossible. They are studying the process of evolution not through fossils but directly, as it is happening. Now, by modeling the steps evolution takes to build, from scratch, an adaptive biochemical network, biophysicists Eric D. Siggia and Paul Francois at Rockefeller University have gone one step further. Instead of watching evolution in action, they show that they can predict its next best move.

We can’t copy the whole article, but here’s a bit more:

In this evolutionary space [a computer running some kind of genetic algorithm], Francois and Siggia instructed their algorithm to find a network that worked very much like an eye after adjusting to different levels of light. “The eye is a very good example of adaptation,” says Francois. “It admits different amounts of light when light levels change, and after some period of adjustment, your eyes work equally well as before. That’s what we selected for; we instructed our algorithm to find a network that after responding to some input, always comes back to its initial value, or level of working. That’s perfect adaptation.”

We’re adding the bold font here:

To find this network, the algorithm, like Darwinian evolution, showed no mercy. During each generation, the algorithm randomly added, deleted or changed the features of genes in a population of gene networks and selected only those that were the most fit, and thus most likely to reproduce. After duplicating the fittest networks in each generation, it repeated the process of mutation, selection and duplication over and over again until it eventually arrived at the network that adapted perfectly to a random biochemical input.

We can already hear the shrieking from a certain “think tank” in Seattle: “The result was designed!

But it wasn’t.

. AddThis Social Bookmark Button . Permalink for this article

Comments are closed.